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One of the most exciting developments in mathematics in recént years is
the widespread availability of Computer Algebra Systems (CAS) or Symbolic
Manipulation packages. These software packages provide us with the oppor-
tunity to use the computer in a symbolic rather than a computational mode
and hence open the doors to a host of incredible possibilities. They have made
major inroads into many areas of mathematical research, and many people
have anticipated significant roles for such packages in mathematical educa-
tion. To date, however, most of these educational efforts have not borne
much fruit since there is considerable “overhead” involved (e.g., teaching
students to use them and developing appropriate teaching strategies based on
them) in using any of these systems. _

In the present article, we will discuss some extensions of ideas first
presented by Mathews [1],[2] which provide a dramatically new way to ap-
proach the entire notion of integration in introductory calculus. The ideas
we will describe allow the students themselves to discover the antiderivative
and the two Fundamental Theorems of Calculus in an especially simple and
natural way.

The particular CAS system used there is muMATH or its successor
DERIVE for the IBM PC or the Apple II series since they are probably the
most widely available. We note that the identical ideas can be implemented
using any other symbolic manipulation package or even the hand-held HP28S
supercalculator.

Suppose we start with the problem of finding the area under a curve and
introduce the notion of a Riemann sum for a function f(x). Mathews describes
how muMATH can be applied to obtain the limit of the Riemann sum in
closed form, at least when f(x) is a polynomial. In particular, he uses the
muMATH function procedure

FUNCTION RIEMANN (F, 4,B,N)
TERM: EVSUM (F, X, A +Jx(B-A)/N),
TERM: EXPAND (TERM),
RSUM: SIGMA (TERM, J, 1, N),
RSUM: RSUM*(B-A)/N

ENDFUNS$
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to obtain the value for the Riemann sum for the function f(x) on the interval
[4,B] with N subdivisions. For instance, if f(x) = x2 on the interval [0,1] with
N = 100 subdivisions, then we enter

?Fx"2;
? RIEMANN (F,0,1,100);

and within seconds, muMATH responds with a value for RSUM of
6767/20000. (Note that this has automatically been reduced to lowest terms.)
Moreover, if N is used as a generic variable in the command

? RIEMANN (F,0,1, N);

then the muMATH system responds with the closed-form expression for
RSUM in the form

153 + 1/(6N~2) + 1/(2 N).

This limit can now be evaluated in closed form either by hand or by using the
muMATH limit operation as N approaches positive infinity applied to this
expression:

LIM (RSUM, N, PINF); .

We therefore find that the limit of the Riemann sum is precisely 1/3.

In addition, it is possible to use muMATH to produce comparable results
when an arbitrary interval [4,B] is used instead of [0,1] as the limits of
integration. In order to get the greatest effect out of this for a classroom
demonstration, it is desirable to define the function f in terms of a dummy
variable u by changing just one entry in the second line of the function
definition above:

TERM: EVSUM (FU, 4+J#(B-A)/N); .

Suppose that we use the function f(u) = u?, and instead of using the interval
[0,1], we use the interval [0, x] for any arbitrary value of x. To do this, we
enter the command

PFUN2;

and have the system compute the Riemann sum based on N subintervals by
entering

? RIEMANN (F,0, X, N); .
In this case, muMATH will respond with
X 3/(6N"2) + X7 3/(2N) + X7 3/3.
If we now initiate muMATH’s limit procedure

? LIM (RSUM, N, PINF);
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the system responds with
X" 3/3.
That is, muMATH has established that

f’;uZdu = x3/3.

In a totally similar way using f(u) = u3, we can find, in just a matter of
seconds, that the Riemann sum on [0, x] is given by

X~ 4[(AN~2) + X~ 4/(2N) + X7 4/4,

and so, as N approaches infinity, the limit of the Riemann sum is precisely
equal to X" 4/4. Thus we have established that

f2u3du = x4/4.

From a pair of examples such as this, it is inmediately apparent to the
students that a clear pattern exists between the closed-form expression for
the definite integral of a function f(x) on the interval [0, x] and the initial
function itself. Based on this observation, there is a perfectly natural reason
to introduce the notion of the antiderivative of an arbitrary function f(x) as a
means of expressing the definite integral. No longer is it necessary to make
a totally unnatural digression to introduce the antiderivative and then several
lectures later relate it to the definite integral.

In fact, the above derivation can be used to motivate much more of the
theory involved in integration. Having performed the above motivation, it is
now simple to introduce the need for an arbitrary constant of integration to
generate the most general antiderivative of the function f(x). Further, the
First Fundamental Theorem of Calculus,

LT fud = f),

is immediately evident based on the above ideas. All that is needed, if one .
desires it, is to supply a proof for an arbitrary function f(x).

In addition, it is also possible to extend the above ideas to consider the
definite integral over an arbitrary interval [4, B] with muMATH supplying the
results in terms of 4 and B. Thus, if we repeat the above argument

RIEMANN (F, A,B,N);
with f(u) = u2, then muMATH responds with the expression

(~A/N + BINY(A BN/3 —AB/3N) + A~2NJ3 + A~2/(6 N)
+B"2NB3 +B"2/(6N) —A™2/2 + B~2/2),
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for the Riemann sum. If we now apply the limit command to this,
? LIM (RSUM, N PINF);

we obtain

(=2A4~3/3 + 2B~ 3)/6,

which immediately reduces to B~ 3/3 — 4~ 3/3.

[We note that, in the process of obtaining this result, several intermediate
inputs are necessary with muMATH. Since the system works in a totally
symbolic mode, it does not have any direct way to determine whether any of
the quantities involved, A and B, for instance, are positive or negative.
Consequently, in order to evaluate the limit in closed form, muMATH will
inquire of the user whether various terms are positive or negative.]

Consequently, the students clearly see that

[° urdu = b% —a¥,
a

from which it is obvious to them that the value for this definite integral is given
in the form G(b) — G(a), where G(x) is an antiderivative of f(x). Thus, with
one or two very quick examples, students immediately discover the Second
Fundamental Theorem of Calculus entirely on their own. As before, all that
is necessary is to couch the theorem formally in terms of an arbitrary function
f(x) and to supply the proof.
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